
Exam review
Designing classes

Chapters 1-8 (I said 1-9 before)
◦ Applets are not covered.
◦ A list of textbook items to pay special attention to

And some terminology .
Also linked from Day 12 on the schedule page

HW 1-10 (except game of Life)
If you wish, you can take a whole class period for
the written part, and two periods for the
programming part. See the Schedule page
Allowed resources: See Session 8 slides
Review in-class Wednesday, Jan 7
◦ Bring questions. I won’t prepare anything but I am

happy to discuss whatever you want, including working
examples (you pick them)

Exam process?
Exam timing?
Material we have covered?

Life Questions?

Questions about Exam
Methods with variable number of arguments
Designing Classes
Timer-triggered action events.
Work on Game of Life program

A method that returns the
maximum of all of its integer
arguments

public class VariableArgs {

public static int max(int ... args){
if (args.length ==0)

throw new IllegalArgumentException(
"Max must take at least one argument");

int result = args[0];
for (int i=1; i<args.length; i++)

result = Math.max(result, args[i]);
return result;

}

public static void main(String[] args) {
System.out.println("max: " + max(2, 5, 7, 3, 4, 6));
}
}

args is an array of
integers, containing all
of the actual
arguments

A call to max (result is 7)

Q1

It starts with good classes…

Often come from nouns in the problem
description
May…
◦ Represent single concepts

Circle, Investment
◦ Be abstractions of real-life entities

BankAccount, TicTacToeBoard
◦ Be actors

Scanner, CircleViewer
◦ Be utilities

Math

Q2

Can’t tell what it does from its name
◦ PayCheckProgram

Turning a single action into a class
◦ ComputePaycheck

Name isn’t a noun
◦ Interpolate, Spend

Q3

Cohesion

Coupling

A class should represent a single concept
Public methods and constants should be
cohesive
Which is more cohesive?

CashRegister

double NICKEL_VALUE
double DIME_VALUE

double QUARTER_VALUE

void add(int nickels, int
dimes, int quarters)

…

CashRegister

void add(ArrayList<Coin> coins)
…

Coin

double getValue() Q4

When one classes requires another class to
do its job, the first class depends on the
second

Shown on UML
diagrams as:
◦ dashed line
◦ with open arrowhead

CashRegister

void add(ArrayList<Coin> coins)
…

Coin

double getValue() Q5

Lots of dependencies == high coupling
Few dependencies == low coupling

Which is better? Why?

Q6

High cohesion

Low coupling

Accessor method: accesses information
without changing any

Mutator method: modifies the object on
which it is invoked

Q7

Accessor methods are very predictable
◦ Easy to reason about!

Immutable classes:
◦ Have only accessor methods
◦ No mutators

Examples: String, Double

Is Rectangle immutable?

Easier to reason about, less to go wrong

Can pass around instances “fearlessly”

Q8

Side effect: any modification of data

Method side effect: any modification of data
visible outside the method
◦ Mutator methods: side effect on implicit parameter
◦ Can also have side effects on other parameters:

public void transfer(double amt, Account other)
{

this.balance -= amt;
other.balance += amt;

}

Avoid this if you can! Document it if you can’t

/**
* Transfers the given amount from this
* account to the other account. Mutates
* this account and other.
*
* @param amt
* amount to be transferred
* @param other
* receiving account (mutated)
*
*/
public void transfer(double amt, Account other) {

this.balance -= amt;
other.balance += amt;

}

It's part of HW 11
Do this one with your Game of Life Team
Due on Monday (as is Life)
Don't spend more than a couple of hours on
it.

See Big Java Section 9.9
Timer constructor takes as arguments:
◦ a firing interval time (in milliseconds)
◦ an ActionListener object.

Timer autoClick = new Timer(AUTO_CLICK_INTERVAL,
updateButton);

autoClick.start();

import javax.swing.timer;

Work with your partner

	CSSE 220 Day 11
	Exam 1 Details (recap)
	Exam Questions
	Today
	Methods with a variable number of arguments
	Slide Number 6
	What is good object-oriented design?
	Good Classes Typically
	What Stinks? Bad Class Smells
	Analyzing Quality of Class Design
	Cohesion
	Dependency Relationship
	Coupling
	Quality Class Designs
	Accessors and Mutators Review
	Immutable Classes
	Immutable Class Benefits
	Side Effects
	Documenting Side Effects
	Class Design Exercise
	Timer-triggered Action Events
	Back to Life

